Propofol restores TRPV1 sensitivity via a TRPA1-, nitric oxide synthase-dependent activation of PKCε
نویسندگان
چکیده
We previously demonstrated that the intravenous anesthetic, propofol, restores the sensitivity of transient receptor potential vanilloid channel subtype-1 (TRPV1) receptors via a protein kinase C epsilon (PKCε)-dependent and transient receptor potential ankyrin channel subtype-1 (TRPA1)-dependent pathway in sensory neurons. The extent to which the two pathways are directly linked or operating in parallel has not been determined. Using a molecular approach, our objectives of the current study were to confirm that TRPA1 activation directly results in PKCε activation and to elucidate the cellular mechanism by which this occurs. F-11 cells were transfected with complimentary DNA (cDNA) for TRPV1 only or both TRPV1 and TRPA1. Intracellular Ca(2+) concentration was measured in individual cells via fluorescence microscopy. An immunoblot analysis of the total and phosphorylated forms of PKCε, nitric oxide synthase (nNOS), and TRPV1 was also performed. In F-11 cells containing both channels, PKCε inhibition prevented the propofol- and allyl isothiocyanate (AITC)-induced restoration of TRPV1 sensitivity to agonist stimulation as well as increased phosphorylation of PKCε and TRPV1. In cells containing TRPV1 only, neither agonist induced PKCε or TRPV1 phosphorylation. Moreover, NOS inhibition blocked propofol-and AITC-induced restoration of TRPV1 sensitivity and PKCε phosphorylation, and PKCε inhibition prevented the nitric oxide donor, SNAP, from restoring TRPV1 sensitivity. Also, propofol-and AITC-induced phosphorylation of nNOS and nitric oxide (NO) production were blocked with the TRPA1-antagonist, HC-030031. These data indicate that the AITC- and propofol-induced restoration of TRPV1 sensitivity is mediated by a TRPA1-dependent, nitric oxide synthase-dependent activation of PKCε.
منابع مشابه
Propofol Causes Vasodilation In Vivo via TRPA1 Ion Channels: Role of Nitric Oxide and BKCa Channels
BACKGROUND Transient receptor potential (TRP) ion channels of the A1 (TRPA1) and V1 (TRPV1) subtypes are key regulators of vasomotor tone. Propofol is an intravenous anesthetic known to cause vasorelaxation. Our objectives were to examine the extent to which TRPA1 and/or TRPV1 ion channels mediate propofol-induced depressor responses in vivo and to delineate the signaling pathway(s) involved. ...
متن کاملTRPV1 and TRPA1 Mediate Peripheral Nitric Oxide-Induced Nociception in Mice
Nitric oxide (NO) can induce acute pain in humans and plays an important role in pain sensitization caused by inflammation and injury in animal models. There is evidence that NO acts both in the central nervous system via a cyclic GMP pathway and in the periphery on sensory neurons through unknown mechanisms. It has recently been suggested that TRPV1 and TRPA1, two polymodal ion channels that s...
متن کاملParadoxic effects of propofol on visceral pain induced by various TRPV1 agonists
Intraperitoneal injection of propofol inhibits subsequent acetic acid-induced writhing response in mice. Propofol increases the sensitivity of dorsal root ganglion neurons to capsaicin through transient receptor potential ankyrin subtype-1 (TRPA1) and protein kinase Cε (PKCε)-mediated phosphorylation of transient receptor potential vanilloid subtype-1 (TRPV1). Intraperitoneal co-injection of pr...
متن کاملHydrogen Sulfide Plays a Key Role in the Inhibitory Neurotransmission to the Pig Intravesical Ureter
According to previous observations nitric oxide (NO), as well as an unknown nature mediator are involved in the inhibitory neurotransmission to the intravesical ureter. This study investigates the hydrogen sulfide (H2S) role in the neurogenic relaxation of the pig intravesical ureter. We have performed western blot and immunohistochemistry to study the expression of the H2S synthesis enzymes cy...
متن کاملTRPA1 and TRPV1 contribute to propofol-mediated antagonism of U46619-induced constriction in murine coronary arteries
BACKGROUND Transient receptor potential (TRP) ion channels have emerged as key components contributing to vasoreactivity. Propofol, an anesthetic is associated with adverse side effects including hypotension and acute pain upon infusion. Our objective was to determine the extent to which TRPA1 and/or TRPV1 ion channels are involved in mediating propofol-induced vasorelaxation of mouse coronary ...
متن کامل